1 Euler's Method

1.1 Concepts

1. Euler's method allows us to approximate solutions to differential equations. Given a differential equation $y^{\prime}=f(y, t)$ and an initial condition $y(0)=y_{0}$ and a step size h, we can approximate the path by $y_{n+1}=y_{n}+f\left(y_{n}, t_{n}\right) h$. This is gotten by writing $y^{\prime}=\frac{d y}{d t} \approx \frac{y_{n+1}-y_{n}}{h}$.
A slope field is a graph where at every point y, t, you draw a line with the slope there, which is given by the function $f(y, t)$.

1.2 Problems

2. True False We can only use slope fields and Euler's method when we are given a first order equation.
3. Consider the differential equation $y^{\prime}=x-y^{2}$ with initial condition $y(0)=1$. Use Euler's method to approximate $y(3)$ using step sizes of 1 .
4. Use Euler's method to estimate $y(3)$ given that $y^{\prime}=x^{2}+y^{2}$ and $y(0)=0$ using step sizes of 1 .
5. Use Euler's method to estimate $y(3)$ given that $y^{\prime}=y^{2}-x^{2}$ and $y(0)=1$ using step sizes of 1 .

2 Slope Fields

2.1 Concepts

6. A slope field is a graph where at every point y, t, you draw a line with the slope there, which is given by the function $f(y, t)$.

2.2 Problems

7. True False Autonomous equations like $y^{\prime}=2 \sqrt{y}$ will have slope field that are the same after shifting left and right.
8. Match each slope field to the differential equation and sketch some solutions to them.
9. Draw a slope field for $y^{\prime}=y^{2}+x^{2}$ and sketch the solution when $y(0)=0$ on the interval $-2 \leq x \leq 2,-2 \leq y \leq 2$.
10. Draw a slope field for $y^{\prime}=y^{2}-x^{2}$ and sketch the solution when $y(0)=1$ on the interval $0 \leq x \leq 4,0 \leq y \leq 4$.
11. For each differential equation, estimate $y(2)$ using the starting point $y(1)=1$ and step size of $h=\frac{1}{2}$.

$\frac{d y}{d x}=y-x$	
	DE3

